MOLECULAR AND DEVELOPMENTAL NEUROSCIENCE Chronic activation of the D2 autoreceptor inhibits both glutamate and dopamine synapse formation and alters the intrinsic properties of mesencephalic dopamine neurons in vitro
نویسنده
چکیده
Dysfunctional dopamine (DA)-mediated signaling is implicated in several diseases including Parkinson’s disease, schizophrenia and attention deficit and hyperactivity disorder. Chronic treatment with DA receptor agonists or antagonists is often used in pharmacotherapy, but the consequences of these treatments on DA neuron function are unclear. It was recently demonstrated that chronic D2 autoreceptor (D2R) activation in DA neurons decreases DA release and inhibits synapse formation. Given that DA neurons can establish synapses that release glutamate in addition to DA, we evaluated the synapse specificity of the functional and structural plasticity induced by chronic D2R activation. We show that chronic activation of the D2R with quinpirole in vitro caused a parallel decrease in the number of dopaminergic and glutamatergic axon terminals. The capacity of DA neurons to synthesize DA was not altered, as indicated by the lack of change in protein kinase A-mediated Ser(40) phosphorylation of tyrosine hydroxylase. However, the spontaneous firing rate of DA neurons was decreased and was associated with altered intrinsic properties as revealed by a prolonged latency to first spike after release from hyperpolarization. Moreover, D2R function was decreased after its chronic activation. Our results demonstrate that chronic activation of the D2R induces a complex neuronal reorganization involving the inhibition of both DA and glutamate synapse formation and an alteration in electrical activity, but not in DA synthesis. A better understanding of D2R-induced morphological and functional long-term plasticity may lead to improved pharmacotherapy of DA-related neurological and psychiatric disorders.
منابع مشابه
Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos.
The major pathological lesion of Parkinson's disease (PD) is the selective cell death of dopaminergic (DA) neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to DA cell death underlying the PD process remain elusive, brain-derived neurotrophic factor (BDNF) is thought to exert neuroprotective as well as neurotrophic roles for the s...
متن کاملContexts for dopamine specification by calcium spike activity in the CNS.
Calcium-dependent electrical activity plays a significant role in neurotransmitter specification at early stages of development. To test the hypothesis that activity-dependent differentiation depends on molecular context, we investigated the development of dopaminergic neurons in the CNS of larval Xenopus laevis. We find that different dopaminergic nuclei respond to manipulation of this early e...
متن کاملSupernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo
Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...
متن کاملP-118: Effect of Vitrification on Developmental Competence of Parthenogenetic Activation in In Vitro Matured Ovine Oocytes
Background: Cryopreservation of in vitro matured oocytes is a useful technique because the oocytes can be used for some assisted reproductive technologies. On the other hand, the cryopreservation of oocytes is an open problem as a result of their structural sensitivity to the freezing process. The purpose of this study was to evaluate the effect of vitrification on in vitro development of vitri...
متن کاملHuman midbrain precursors activate the expected developmental genetic program and differentiate long-term to functional A9 dopamine neurons in vitro. Enhancement by Bcl-X(L).
Understanding the molecular programs of the generation of human dopaminergic neurons (DAn) from their ventral mesencephalic (VM) precursors is of key importance for basic studies, progress in cell therapy, drug screening and pharmacology in the context of Parkinson's disease. The nature of human DAn precursors in vitro is poorly understood, their properties unstable, and their availability high...
متن کامل